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SITUATIO~S INVOLVING SOCIAL PRESSURE 1 

P.-i.TRICK SUPPES A:i'D FR .. \:\KLl)J KRAS;jE 

Stanford University 

Much contemporary social psycho­
logical theory appears to be theory of 
group behavior qua group. While 
group oriented concepts may be tran­
siently useful in classifying and sys­
tematizing the vast experimel1talliter­
ature of social psychology, we hold 
that ultimately group behavior can 
be explained entirely in terms of the 
behavior of the individuals who con­
stitute the group. In other words we 
regard the theory of social behavior as 
a highly important special case of the 
general theory of individual behavior. 
Furthermore, to our minds recent 
quantitative formulations of stimulus­
response-reinforcement theory provide 
excellent conceptual tools for effecting 
such a sUbsumption. 

This is not to claim that we are pre­
pared to give a detailed stimulus­
response-reinforcement analysis of 
every experimental situation now 
considered important by· social psy­
chologists, but it is to claim that the 
general lines of such an analysis are 
clear and in fact may be given in 
detail, as we shall see for a representa­
tive example, for a rather large class 
of social interaction situations. \Ve 
conceive of an interaction situation as 
one in which each member of a group 
(potentially) provides stimuli and 
reinforcements for every other mem­
ber of the group with the behavior of 
each member entirely explicable on 
an individual basis given the sequence 
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of stimuli and reinforcements im­
pinging on him. Examples of small 
group experiments analyzed from this 
point of view are Hays and Bush 
(1954), Atkinson and Suppes (1958, 
1959), Burke (1959), and Suppes and 
Atkinson (1960). 

Here we wish to consider the theory 
of social comparison processes, an 
area of social psychology usually 
spoken of in terms of frames of 
reference, social pressure, group norms, 
and the like, whose experimental work 
is both especially provocative and 
particularly well suited to precise 
experimentation. 

Using strictly the notions of stimu­
lus, response, and reinforcement, it 
is natural to construe the kinds of 
social situations with which we are 
concerned as classical or "almost 
classical" discrimination experiments. 
The problem, of course, is to identify 
in each experiment just what is to be 
considered as stimulus, what as re­
sponse, and especially difficult what 
as reinforcement. Once the identifi­
cations have been made it is easy 
enough to assume that a response 
reinforced in some stimulus situation 
will have an increased tendency to be 
emitted on future occasions of that 
situation. 

In the social situation objective 
stimuli and the beha"vior of other 
members of a group combine to form 
the relevant stimulus situations for 
each subject. Response classes arein 
principle arbitrary, and if an experi­
ment is well structured for the sub­
ject, the experimenter wiII be easily 
led to a "natural" classification of 
responses. 
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Considerable difficulty arises in 
making reinforcement identifications, 
because subjects bring \vith them to 
an experiment a large number of cov­
ert verbal responses having secondary 
reinforcing properties. Consequently, 
we are simply forced to limit the 
number of reinforcers which we wish 
to recognize as important and for 
analytical purposes to ignore the rest. 
We shaH suppose first that social 
support per se is reinforcing; although 
admittedly there will frequently be 
factors working against it, we will 
consider them explicitly when they 
seem important. The proprioceptive 
stimuli. produced by an overlearned 
response have consistently preceded 
reinforcement, and therefore the mak­
ing of an overlearned response is se1£­
reinforcing via the mechanism of 
seconda.ry reinforcement; thus, we 
shall assume secondly that there is 
some (secondary) reinforce-
ment making responses which 
have been well overlearned in every­
day eXperience, Lastly, there may 
be experimenter-controlled rewards 
of a less ambiguous nature such as 
money payoffs, and primary 
drive reduction, 

As a specific of the type 
analysis which \ve are suggesting we 
shaH study in in the remainder 
of this paper an experimental situa­
tion which is similar in certain respects 
to the classic experiments of Sherif 
(1935) and in other respects to 
of Asch (1956), The theoretical 
ideas which been described will 
be embedded in a stochastic model of 
the general described by Suppes 
and Atkinson (1960), which is a 
variant of the stimulus sampling 
theory of and Burke, 

In the experiment to be described 
subjects were required to make a 
choice on the basis of an objective but 
slightly ambiguous stimulus situa­
tion; in particular they were asked to 

indicate which of two lines thev 
thought was lodger, This choice wa's 
followed by an indication of what the 

were instructed to believe 
was the correct answer. 

From a social psychological point 
of view the subject plus the experi­
menter form a dyad which is the 
simplest case of a small group. Ac­
cording to the social orientation the 
experimenter exerts (social) "pres-

on the subject to modify his 
choices in the direction which the ex~ 
perimenter calls correct. In this 
sense there are certain similarities to 
Asch's (1956) study; however, since 
the subject does not find out what the 
experimenter considers as correct until 
after his own response made, 
one might suppose, following Sherif 
(1935), that tr.1.e effect of the social· 
lr,",""""-'" imposed by the experimenter 

to modify the subject's frame of 
reference on future stimulus pres­
entations. 

Our approach to the problem will 
be to treat the experimental situation 
as a stimulus discrimination experi. 
ment. The situation is complicated 
_u,,""Y in that subjects have strongly 
overlearned a relevant visual discrimi-

prior to this ; we 
acknowledge the strong of this 

learning by positing a secondary 
reinforcer which may to ac~ 
centuate or attenuate of 
the experimenter-controlled reinforcer 
of social support. 

I t is the conflict past learn-
and the experimenter-controlled 

which social pres~ 
sure that does not exist in the usual 
discrimination experiment. The sub­
ject holds Opinion A (here interpreted 
as a response probability) and another· 
person (in this case the experimenter), 
who has for one reason or another the 
power to reinforce the subject, holds 
B, a potentially different opinion. 
That the person giving the second re-
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sponse is the experimenter is irrele­
vant. It could equally well have been 
another subject, and by the same 
token we could easily pass from the 
dyad to a larger group. This would 
involve a more laborious but strictly 
analogous treatment. 

THE EXPERD1ENT AND ITS THEORY 

On each of a sequence of trials, a 
pair of lines, one slightly longer than 
the other, was projected for a few 
seconds on a screen. The subjects 
were asked to record on answer sheets 
which of the two lines (labeled Line 1 
and Line 2; they thought was longer. 
They were then told (what they had 
been instructed to believe would be) 
the correct answer; however, it was in 
reality correct only on a randomly 
chosen subset of the trials. 

In order to describe the situation 
more precisely, let us introduce some 
notation: 

Sl = Event of projecting a line pair of which 
Line 1 is longer 

Sz = Event of projecting a line pair of which 
Line 2 is longer 

A 1 = Response of subject on answer sheet in­
dicating that he thinks Line 1 is longer 

A2 = Response of subject on answer sheet in­
dicating that he thinks Line 2 is longer 

El = Reinforcing event of experimenter say­
ing, "Line 1 is longer." 

E2 = Reinforcing event of experimenter say-
ing, "Line 2 is longer." 

Ol = Secondary reinforcement of Al response 
02 = Secondary reinforcement of A2 response 
'11'1 =P(E1iSl) 
'11'2 = P(E2 iS2) 

'Y = P(Sl) 
il = Probability that a subject makes a cor­

rect discrimination in a control experi­
ment where no information is being 
given him regarding the correctness of 
his responses 

We will be primarily concerned 
with the behavior of various condi­
tional probabilities of response as a 
function of 71"1, 71"2, and o. 

On any trial first a stimulus event 
(Sl or S2), then a response (Al or A 2), 

and then a reinforcing event (El 
or E 2) occurs. In addition 'we intro­
duce automatic secondary reinforcing 
events, I)) and 1)2, which reinforce 
the "perceptually correct" response. 
Thus, on any trial of an experiment 
the sequence of events may be indi­
cated by the string of symbols, 

C --+ S --+ A --+ I) --+ E --+ C' 

where C and C' represent conditioning 
before and after the trial and where 
we say that a response is conditioned 
to a stimulus event if the response is 
elicited as a result of that stimulus 
event. At all times exactly one re­
sponse is conditioned to a particular 
stimulus event. 

Independently of what response 
was actually made on a trial we will 
say that both Ek and Q/, reinforce AI<. 
If a reinforcement is effective, then 
the reinforced response becomes con­
ditioned to the stimulus event occur­
ring on the trial.· If no reinforcement 
is effective, then conditioning remains 
unchanged. It will be assumed that 
exactly one of the following occurs on 
every trial: social support is effective, 
secondary self-reinforcement is effec­
tive, neither is effective. Since these 
events are mutually exclusive and 
exhaustive, we define 

(it = P (Ak is effectively re­
inforced by Qklnk, E j ) 

82 = P (A j is effectively re­
inforced by E j Ink, E j ) 

1 - 81 - 82 = P (No reinforcement is 
effective [Qk' E j ) 

Consider the subsequence of trials 
on which S1 and S2, respectively, 
occur. Since the conditioning of a 
response to a stimulus event can be 
affected only if that stimulus event 
occurs, we can treat these two subse­
quences as separate and independent 
simple learning situations (simple 
learning as opposed to discrimination 
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learning). In particular it is easily 
seen that each learning process is 
characterized under our assum ptions 
as a Markov chain with Al and All 
as its states (that is to say on any 
trial either A 1 or A 2 is conditioned 
to S,). 

As an example of the method used 
in deriving the transition matrices for 
these chains, we shall analyze in terms 
of a tree of logical possibilities a trial 
on which S1 occurred. If the subject 
ended the last Sl trial conditioned to 
A 11 then the relevant tree is 

Al 
(h/ 

E//~2 Al 

/~ 

~
'II"l/l_fh_~ 

. t conditioned to S, 

1-11"1 . (It/ 
E 7 __ 88 22_ A2 

I-S . 
Al 

and if the subject ended the last SI trial with Aa conditioned to S1 we have 

Using similar methods we arrive at-­
the following Markov chains for the 
8 1 and S2 learning processes, respec­
tively. On S1 type trials we identify' 
two states, 1 and 2, referring to Al 

conditioned to S1 

and A 2, respectively, as being condi­
tioned to S1; this gives the transition 
matrix 

[
1-(1-11"1)82 (1-'11"1)02] [lJ 

61 +'11"192 1-81-'lI"182 



50 PA'l'IUCK SUPPES AND FRANKLIN KRAS~E 

Similarly on S2 trials identifying states 
1 and 2 referring to A 1 and A 2, respec~ 
tively, being conditioned to S2 the 
transition matrix is 

[2J 

Using the fact that the sequence of 
Sl'S and S2'S dccur in accordance with 
a binomial distribution with param~ 
eter 1', we may combine the above 
processes to obtain Pit (A 11 S 1) and 
Pit (A 11 S2) representing the probabili~ 
ties of A 1 responses on the nth trial 
of the full experiment given Sl and S2 
stimulus events, respectively; 

P,,(At/Sl) 

= ['-~::'l 
X [1- l' (81 +82)],,-1 [3J 

Pn(AdSz) 

1- f1- O- 1.-?l"2] 
~+1 ~+1 
th l 82 

X[1-(1-1')(81+82)],,-1 [4J 
~n=l, 2, .• , 

The psychophysical constants Q and 
(1 - 0) have been taken as the initial 
probabilities of A 1 responses on S1 and 
S2 type trials, respectively. It is clear 
that since 0 ~ 81 + 82 ~ 1, the right 
hand terms of each expression vanish 
for large n, and hence, the asymptotic 
results are given by the first terms to 
the right of the equality signs. We 
have graphed the asymptotic quanti­
ties as a function of the ratio fh/82 for 
relevant values of ?l"l and 11"2 in Figure 1. 

METHOD 
Stimuli 

The stimuli for these experiments were 
pairs of parallel lines. projected on a field 46 

FIG.1. Asymptotic behavior of P(A11 Sl) and 
P(A11 S2) as a function of the ratio eJ/fJ2. 

inches wide by 32 inches high; the lines were 
oriented so that a line passing through their 
midpoints would be perpendicular to each. 
Subjects were run under two different stimu­
lus conditions, which we shall designate the 
"hard" and conditions to refer to their 
involving hard and easy discriminations, re­
spectively. Within each difficulty condition 
(hard or easy) there were two types of slides 
used (A and B in Table 1), and the orienta­
tion of the line pairs was permuted so as to 
produce 2 X 2 X 2 = 8 different line pairs 
(e.g., lines vertical, lines horizontal, long line 
on .left, long line on right, etc.). The lines 
were labeled 1 and 2, respectively, for identifi­
cation by the subjects. In order to avoid the 
effect of position habits on the data, for half 
the subiects the upper horizontal and left 
vertical lines were always labeled 1 and for the 
other half the bottom and right lines were 
called 1. 

In Table 1, which gives a description of the 
line pairs, a is the distance between the lines 

TABLE 1 

DESCRIPTION OF STIMt;1.I 

Hard Easy 
Slide 
Type 

a b c • a b c 

AI 15.5 
----

.72115.5 
----

5.12 .240 2.56 .310 
B ,15.5 7.75 .250 .72) 15.5 7.75 .340 

I 

.8 
-
.92 
.92 

Note.-a, b, and c are measured in inches. 
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TABLE 2 

GRoup-DESCRIPTlO:.1S 

Description 

Easy, low symmetry 
Hard, low symmetry 
Hard, medium symmetry 

of the pair; b is the half-length of the shorter 
line i c is the difference in half-lengths between 
the longer and shorter iines; /l is the 
ability of the subject making a correct dis­
crimination when no exoerimenter controlled 
reinforcing events are influencing his behavior. 

Room and Apparatus 

The line pairs were projected by an Argus 
300 Projector '>vlth a Sylvania 300-watt pro­
jector lamp on to a beaded screen 146 inches 
away. The subjects (from one to five in num­
ber) were seated at a distance of about 96 
inches from the front of the screen .. The room 
illumination was about .3 Weston II units. 

The subjects responded on answer sheets 
nr<'n~r"r< in essentially the same way as stand­

score sheets. For half the subiects 
the left column was used to indicate an Al 
response and for half the 

Experimental Groups 

Three groups of subiects whose conditions 
are described in Table 2 were run. The degree 
of symmetry under "Description" refers to 
relative similarity of reinforcing situations on 
51 and 52 type trials. For all groups 'Y "" .5. 

Subjects 

The subjects, who were students at Stanford 
University, were obtained from the student 
employment service, an introductory psychol­
ogy class, and a university dormitory. With 
the exception of a few of those from the psy­
choiogy class all subjects were male. There 
were 26, 25, and 18 subjects in Groups I, II, 
and III, respectively. Because of certain 
technical difficulties in preparing the stimuli, 
subjects were not placed randomly in groups. 

Procedure 

There were from one to five subjects per 
experimental session. The subjects, having 
been seated and given answer sheets, were 
given the following instructions. (Asample 

slide was projected on the screen throughout 
the instructions.) 

This is an experiment on judgment of 
length. I am going to flash a number of 
slides on the screen each of which has two 
lines on it i your job ill each case will be to 
decide which 9f the two lines is the longer 
and to mark your judgment on the answer 
sheet in the appropriate column opposite 
~he number of the slide weare on. For 
~xample: if on the slide I showed, the 
hne next to the figure one on the screen Was 
longer, you would mark the answer sheet 
like this [show marked answer sheet]. 
Sometimes the pair of lines will be vertical 
rather than horizontal; then the line here 
would be Hne one and the One here line 
two [point to' screen to illustrate what I am 
saying]. Please mark the answer sheets 
heavily and completely as though you were 
filling in an IBM score sheet. I will an­
nounce the number of the slide weare on 
before each judgment and will tell you the 
correct answer after each judgment. You 
must make your decisions quickly and re­
cord them BEFORE I tell you the answer. 
Each slide will appear for about 2 seconds. 
One of the two lines will always be longer 
than the other; however, some of the judg­
ments may be difficult. If you are not 
sure which line is longer, then guess. Since 
I want you to work' completely independ­
ently of each other, I must request that you 
remain absolutely silent during the experi­
ment. Are there any questions? 

The trials then proceeded at a rate of about 
seven per minute. Each stimulus presema­
tion lasted for approximately 2 seconds. Oc­
casionally the experimenter found it neces­
sary to repeat early in the sessions "this is a 
test of sorts; you must remain completely 
silent. It Each subject received a total of 250 
trials. 

After the experiment the subjects were in­
structed: "Will you please write a brief state­
ment of your reactions to this experiment?" 
The responses to this question indicated that 
the subjects understood and believed the 
instructions. 

ESTIMATION METHODS 

Two methods will be presented for 
estimating the parameters (h and 112 
from the data of our experiments. 
First we shall make maximum likeli­
hood. estimates based on the separate 
8 1 and 8 2 response subsequences 
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(Anderson & Good~an. 1957); ~hen. 
taking advantage ot the mutual l11de­
pendence oi the S1 and S2 learning 
processes, we sh~n maximize .the joint 
likelihood funct10n to obtaIn slngle 
estimates of 81 and 82• 

It can be shown that the first 
method is essentially equivalent to 
setting the expressions for the theo­
retical transition probabilities equal 
to their estimates and solving for lh 
and fh. 

The estimates based on maximizing 
the joint likelihood function are not 
quite so simple. The. derivation, 
which is reasonably stralghtfonvard 
but tedious, leads to a tenth degree 
equation for the. unknown, (h; ~oiu­
tlons were obtawed by apprOXIma­
tion_methods. 

RESULTS AN"D DISCUSSION 

Tables 3 and 4 present learning 
parameter estimates obtained the 
two methods described above. 

The most important observation to 
be made is that for all estimates 81/8. 
is less on hard than on easy discrimi~ 
nations. One can go even further and 
point out that with exception c:f 
the S2 trial estimate in Group III this 
learning parameter ratio is greater 
than one for the easy discriminations 
and less than one for the hard ones. 
This says essentially (for our experi­
mental situation) that if the physical 
stimulus situation is fairly unambigu­
ous, subjects will "prefer" to derive 
their reinforcement from it via !:h and 
fh while if it is not, they will depend 
primarily on social support .. This 
makes good intuitive sense and m fact 
has been adopted as a postulate by 
Festinger (1954) in his theory of 
social comparison processes. 

In spite of the fact that we get 
these intergroup differences for all 
estimates, it is interesting and rather 
odd that, as will be seen by studying 

T/\BLE 3 

SEPARATE :VIAxnfnr LIKELlIIOOD E5TJ~rArES 
OF Ih, Ih A:-;D DERIVED QUANTITIES 

81 .42 .36 .48 
ii, .27 .36 .45 

lJ:!e2 1.6 
81 + Ilz .69 

1.0 1.1 
.72 .92 

Table 3, the effects described above 
show up much more markedly on S 1 

than on S2 type trials. Since the 
actual stimulus and response labeling 
was randomized over subjects, and 
since the stimuli and responses were 
physically symmetrical, the relation 
between 71"1 and 71"2 must be responsible 
for this rather surprising phenomenon. 

Reference to the tables under dis­
cussion will show that the over-all 
effectiveness of reinforcement, 171 + fh, 
increased from the easy to the hard 
condit,ions. One might argue that 
the harder a discrimination, the more 
attentive the subject ·will be to all 
events surrounding him; thus, rein­
forcements are generally more effec­
tive when a is smalL Although it is 
true that via Equations 3 and 4 one 
can estimate the ratio fjI/fh directly 
from asymptotic data, \ve have pre­
ferred to make much more efficient 

TABLE 4 

JOIKT MAXI}HL,f LIKELIHOOD ESTIMATES OF 
8J, (Jz, AKD DERIVED Qt:ANTITIES 

Quantity Group I Group II'! Grnu>, III 

81 ,44 .39 AD 
82 '" .~" .42 .52 

eJ/52 1.8 .92 .77 
01 + 82 .69 ., .81 .92 
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estimates of this ratio by making 
strong use of the Markov properties of 
response subsequences. Specifically. 
the ratio 61/02, where 01 and O2 are 
maximum likelihood estimates, yields 
the maximum likelihood estimate of 
(jl/(j2' Consequently, we wish to em­
phasize that the extent of agreement 
between observed asymptotic beha­
'vior and the asymptotes predicted 
using the maximum likelihood esti­
mates of (jl and {}2 is an empirical ques­
tion representing one sort of test of the 
model. The predicted asymptotic 
conditional response probabilities have 
been included in Table 5, which also 
presents for purposes of comparison 
the relevant relative frequencies over 
the last 50 and 100 trials for each 
group. Although the fit is not perfect, 
the observed and predicted rank or­
ders across groups are in agreement 
for the predictions based on the joint 
maximum likelihood estimates. 

Observed mean learning curves on 
which the predicted asymptotes (of 
the last line of Table 5) are indicated 
as dashed lines are plotted in Figure 2. 
In order to determine whether a 
significant amount of learning oc­
curred, the conditional response pro­
portions from the first and last 50 
trials of experiment were com­
pared by two~tai1ed sign tests (Siegel, 

1956); the significance levels a are 
shown next to the appropriate curves. 

The sign test, which was used here 
because the distribution assumptions 
necessary for it are almost negligible, 
does not produce acceptable signifi­
cance levels. Higher level (a < .01) 
tests may be obtained if we are willing 
to make the rather strong assumption 
that the individual responseS of a 
particular subject are independent 
Bernoulli events. However, this as­
sumption is too grossly violated to al­
low one to place much confidence in 
results based upon it. 

If we draw learning curves (Equa­
tions 3 and 4) using the maximum 
likelihood 'estimates' of ElI and 82, we 
find that the curves rise to their 
asymptotes much more rapidly than 
do the observed curves of Figure 2. 
We wish to point out that this does 110t 
represent a fundamental problem for 
the present theory although it limits 
the usefulness of the specific form of 
the model which we have presented. 
The problem arises from our having 
assumed that only one stimulus 
"element" or Hpattern" (see Estes, 
1959) was associated with each stimu­
lus event, S;. By positing a larger 
number of such stimulus patterns and 
retaining the supposition that exactly 
one is sampled on each trial, the 

TABLE 5 

OBSERVED AND PREDICTED ASYMPTOTIC CONDITIONAL RESPONSE PROBABILITIES 

Group I Group II Group III 

P(A,jS,) P(A.IS,) P(A.;S,) l P(AtIS') P(A,;S,) P(A,lS,) 

Observed: Over last 100 trials .92 ,31 .83 .40 .79 .19 
Observed: Over last 50 trials .94 .28 .84 .39 .74 .18 
Theoretical: Based on Sl trial .92 .20 .83 .48 .79 .27 

estimates 
Theoretical: Based on 52 tria! .88 .31 .85 .40 .85 .19 

estimates 
Theoretical: Based on .89 .29 .8'! .42 .83 .23 

joint l\ILE 
i, 
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FIG. 2. Mean learning curves. 
(Blocks of 2S trials.) 
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theoretical learning rate may be de­
creased at the expense of considerably 
more tedious computations. 

\Ve may take a compromise ap­
proach, however. If we suppose there 
to be N stimulus elements associated 
with each stimulus situation, then 

although most formulae become con­
siderably complicated, the learning 
curves 3 and 4 are changed only in 
the last term; let 01/02 = € then we 
may write 

We may estimate e directly from 
asymptotic data and choose Od N to 
make a least squares fit of the theo­
retical to the empirical learning curves. 

CONCLUSIONS 

In conclusion it is our opinion 
that considerable analytic advantage 
has derived from application of a 
quantitative theory of individual be­
haviorin the present context. Through 
its use we have been able to make 
highly specific remarks about the 
extent of operation of certain events 
which are not directly observable but 
which may reasonably be postulated 
to exist, namely secondary self-rein­
forcement of responses well estab­
lished'iin everyday""experience. Also 
we have been able to compare the 
magni tude of the effects of these 
secondary reinforcements to that of 
the more directly controlled social 
support. As far as we can see, it 
would be considerably more difficult 
to obtain comparable information 
from experimentation not oriented 
about a quantitative theory .. 

We wish to emphasize ~gain that 
the central ideas behind the present 
analysis are ones of considerable 
generality; similar techniques of anal­
YSlS can be applied to many social 
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psychological situations by a fairly 
straightforward extension of the idea's 
presented here. . 
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APPENDIX A 

The model (Model I) originally pro­
posed for the experimental situation 
studied in the body of this paper differed 
in its reinforcement mechanisms from 
the one (Model II) actually discu5sed 
there. Since rather extensive work was 
done on it and since we consider some 
of its failings to be we pre~ 
sent here some detailed comments on 
Model I. 

Let us call those trials on which the 
subscripts of E, and S, do not agree 
"conflict trials." Rather than intro­
ducing secondary reinforcers (h and Qz, 
we assume that the reinforcing event Elo 
is effective with probability B.4. on non­
conflict trials and with probability 
BB < OA on conflict trials. While we 
make no explicit psychological assump­
tions regarding the reasons for attenuat­
ing the learning parameter on conilict 
trials, the intuitive reasons are clear. 

Markov process state identifications 
are exactly the same as in Model II, and 
we here present those results for ?l-1odel I 
which correspond to those indicated for 
Model II in the body of the paper. On 
Sl trials the transition matrix is 

[
1 - (1 - 'iT'l)8S 

'iT'16.<. 

and on S2 trials it is 

[ 
1 - 'iT'zB.4. 'iT'28A ] 

(1":" 'iT'z)8n 1 - (1 - 'iT'2)8s 

The learning curves are 

+(0- 'iT'1 ) 
'iT'1+ :: (1-'iT'1) 

X (1-'Y[8B(1-7T'1)+8A'iT'lJl,,-1 [A3J 

1 
l-'iT'o 

Pn(Al,S2)=OA • 
ei'2+ (1- 7T'2) 

+((1-0)- 1-1!'2 ) 

:~7T'2+(1 7T'z) 

X \1- (1-"Y)[Os(1-7T'z)+8A'iT'2Jl-1 
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And the graphs of the asymptotes as a 
function of (J,t/8 B, which are presented 
in Figure AI, should be compared with 
the corresponding ones for:\1odel II. 
~ Several methods of learning parameter 
estimation were used for this modeJ, and 
each led to the same rather disquieting 

for all methods the estimates of 
iJA were greater than one. Before Con· 
sidering the reason for this anomaly, let 
us consider the various methods of esti­
mation from which we obtained estimates 
of iJA and (JB. 

]l;!ethod 1. This method is precisely 
the same in principle as the first method 
presented in the body of the paper for 
(h and iJ2• It is a true maximum like!i· 
hooq estimate on each of the two 
response subsequences. As in Model II 
the method is for a fairly large number 
of counted transitions per subject equiva­
lent to setting the observed transition 
matrices equal to the theoretical ones and 
solving. A comparison of the transition 
matrices for the two models that 
using this estimation procedure = e B. 

Meth()d 2. The joint maximum iikeli­
hood estimate here, which is considerably 
simpler than in Model II, may be ob­
tained explicitly by solving a second 
degree equation. 

lvlethod3. The next procedure, which 
is rather complicated in the present 
experiments, we consider especially in-

FIG. A1. Asymptotic behavior of P(A: St) 
and P(At I S2) as a function of the ratio 
in ModelL 

because it seems to yield many 
of· the advantages of maximum likeli­
huod estimation in situations whf~re true 
maximum likelihood estimation is un· 
feasible. 

Consider the ful1 sequence of responses 
and S2 trials in the same 

now) a particular subject. 
possible to compute for n 

(Aj on Trial on Trial n-l) 

indepeidently of the trial number. n. 
Thus. while it is true that the sequence of 
responses for a subject is a chain of infi­
nite order, ,ve may as a first approxima­
tion treat it as a stationary l\Iarkov chain 
with trans! tion probabilities, and 
compute under this assumption the 
maximum likelihood estimate of the 
parameter pair (BA. aB ) i such a pcocedure 
is an example of pseudo maximum likeU· 
hood estimation. The pseudo likelihood 
function is 

Len) = II 
-: Ii 

where P",(Ai) is taken asymptotically, 
ni is the number of occurrences of re­
sponse Ai on the first trial oi the sequence 
over which the pseudo maximum likeli­
hood estimate is being taken, and n'i is 
the observed number of transitions from 
response Ai to A j over the sequence in 
question. 

lv[ethod 4. One estimate of 
BAiBB was used in order to provide a 
check on the above procedures. Let 
P",(A1IS1) and P",(AdS2) be the esti. 
mated (over the last 50 trials) asymptotic 
conditional probabilities of response. 
Then the value of (J.~/()B which minimizes 

is a rather natural estimate of B.i/B B 

although it uses very little of the infor­
mation in the data. 

The various estimates of e d and 8 Bare 
given in Table Ai. 
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T,,\BLE A1 
MAXIMUM LIKELIHOOD ESTIMATES OF 0.1, OB, AND OA/OB' 

Estimation Quantity Method 

(j A on Sl trials 
flll on Sl trials 

1 th/1J1l on Sl trials 
I:lA on S2 trials 
I:l.s on S2 trials 

()A!OIl on Sa trials 

()A 

2 OIl 
OA/flB 

IJA 
3 IJIl 

IJA/fhJ 

4 
i 

O.4./()1l 

The occurrence of learning parameter 
estimates greater than one makes, inter­
pretation of Model I very tenuous. It 
will be instructive to consider the prob­
lem in more detail. It will be seen from 
Equations A1 and A2 on which our esti­
mation procedures are primarily based, 
that fJA and fJB in no equations 
which would their values to the 
unit interval. It is in interpretation 
and in the derivation of transition ma­
trices that we have made use of the learn­
ing parameters' roles as probabilities. 

Although we obtain bounded 
estimates of fJA fiB by looking at 
detailed sequential of the data, 
we find that it is inadequacies of 
the learning model at precisely this level 
of analysis which are the cause of our 
excessively learning parameter 
estimates. 

To be more specific let AI,,. represent 
response Al on trial n, and let EI,n be 
defined analogously, Then, it e'asily 
follows from our learning assumptions 
that on Sl type trials 

P(Al,n+1iE2.n, A 2•n) = 0 [AS] 

P(A 1,n+11 A 2,n) = fJ,1 [A6] 

Although it would now seem quite 
natural to use Equation A6 as the basis 

Group 

I II II! 

1.0 1.1 1.0 
.20 .54 .62 

5.3 2.0 1.7 
2.4 2.2 1,1 

.27 .36 .45 
8.9 6.0 2.4 

1.3 1.2 1.1 
.24 .42 .52 

5.2 2.9 2.2 

2.2 1.7 .56 
.22 .16 .07 

10.0 11.0 8.0 

10.0 6.0 2.4 

for a bounded estimate OffJA, we find that 
it is precisely because Equation A5 is not 
empirically valid that our previous esti­
mation procedures have yielded estimates 
of fiA greater than one. It can be easily 
shown that using estimation Method 1, 
for example, 0.4 is indeed restrained to the 
unit interval if the observed relative 
frequency associated with the left side 
of Equation AS 15 near zero, which in the 
present study it unfortunately is not. 

In spite of its other difficulties the 
present model gives a sufficient 
tion of important qualitative aspects 
the data. First, (fA is consistently greater 
than fJ B i second, comparing Group I 
(easy, low symmetry) and Group II (hard, 
low symmetry), for which 71"1 and 1i2 are the 
same, Group I, which involved the easier 
discrimination, has a greater learning 
parameter ratio e .... /OB. Although the 
pseudo maximum likelihood estimates of 
the learning parameters weakly contra­
dict this latter statement, it is our 
that we may place more confidence 
the true maximum likelihood estimates, 
since their optimality properties are well 
known. 

We should expect under this model no 
change in the fJ values as a function of 1il 

and 1i2 when the same stimuli are used. 
Unfortunately there is such a change j 
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indeed, we notice that when the subject 
makes the less frequently reinforced 
response and is reinforced, this reinforce­
ment tends to have a greater probability 
of being effective than it would have 

otherwise had. This can be seen by com· 
paring the 8 estimates made on 5\ and 52 
type subsequences; the Os estimates in 
Group I, however, are contrary to this 
generalization. 

APPENDIX B 

We consider it to be of some general 
interest to present the method of obtain~ 
ing the learning curves 3, 4, 7, and 8, 
since essentially the same technique may 
be used to derive learning curves in an N 
element pattern model (Estes, 1959) 
with a probability distribution over the 
elements. 

Let 

{

Event of precisely k samPlingS} 
O';,,,.k - of stimulus element i in first 

n trials, n = 1, 2, ... 

Let 

£lm+1(i) = P(A1,,,~S;,nnO"i.n-l,m) [Bl] 

Now, 

P(Al."l S.,,,) 

== E p(A1 ... nS •. "nO"i,nr-l .• ) [B2] 
,.....0. . peS.,,,) 

1 _1 

= peSt,,,) Eo P(Al ... ! S.,,,nUi,n-l,.) 

x P'(S .... I Ui,n-l,.)P (U;.ft-l .• ) [B3} 

= z:: £l>'f-l(i) n - pV(S.) _1 ( 1) 
>=0 /I 

In a general 2 X 2 Markov process if 
x,. is the probability of being in state one 
on trial nand 

p = (1 - b ~) CBS] 
a 1- a 

then 

x = rt-a-b)n[xo-_a_J .. ," a+b [B6] 

here, n = 0, 1, •• '. 

But for the transition matrices for Sl 
and S2 type trials, respectively, we nave 

SI trials: 
b = (1 - 1r1)82 

a = (h + 1r182 
[B7] 

so 

52 trials: 

so 

Thus, 

a + b = til + fJz 

b = 81 + 7r.jJ2 

a = (1 - 1r2)02 

a>'f-l(i) = a",(i) + (aQ(i) - a",(i») 

X [1 - Ih - 8zJ' 
11 = 0, 1, "', 

[88] 

which substituting in Equation B4 gives 

peA l,n lSi, .. ) 
11-1 

= z:: [a .. (i) + (ao(i) - a., W) 
,...0 

X (1 - 81 - 82)'J ( n ~ 1) 

X P'(Si)(l - P(Si))",-I-, [BlO] 

= a",,(i) 3:1 

(n - l) P'(S,) 
.-0 II 

X [1 - P(S.)],,-l-. 

(ao(!) _ a",U)) i l 
(n - 1 )' 

_Q II 

X [(1 - fh - Itz)P(S,)]' 

X [1 - P(S.)]fl-l-'Y 

X [(1 - 81 - Oz)P(5,) 

+ 1 - P(S,):,,--l 
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This becomes for 51 trials. letting 

ao(l) = 0 
p(AI,,,1 Sl, .. ) 

= (h + 7rl02 + [0 _ 01 + 7rl02 ] 

81 + O2 01 + O2 

X [1 - 'Y(81 + 8z)]n-l [B12] 

and for 52 trials becomes, letting 

ao(2) = 1 - 0 ' 

P(A l , .. 152, .. ) 

= (1- 7r2)82 + [(1-0- (l-7rz)8z] 
01+02 01+82 . 

X[l- (1-'Y)(81+8z)]n-l [B13] 




